top of page
Several Open Books

References & Readings

These are the research roots behind the stories—because science and real life can sit at the same table.

The blog posts shared here are shaped by years of study, clinical experience, and a steady stream of research and reading. They’re written to be clear, personal, and useful—but always grounded in evidence.

This page holds the references that support those ideas. Organised by blog. Updated often. 

For the extra curious.

Turmeric: Old Gold, New Signals

Cozmin, M., Popescu, R., & Tohănean, D. (2024). Turmeric: From spice to cure. A review of the anti-cancer, radioprotective and anti-inflammatory effects of turmeric sourced compounds. Frontiers in Nutrition, 11, 1399888. https://www.frontiersin.org/articles/10.3389/fnut.2024.1399888/full

 

Gupta, S. C., Sung, B., Kim, J. H., Prasad, S., Li, S., & Aggarwal, B. B. (2022). Multitargeting by turmeric, the golden spice: From kitchen to clinic. Frontiers in Pharmacology, 13, 820806. https://www.frontiersin.org/articles/10.3389/fphar.2022.820806/full

 

Salehi, B., Stojanović-Radić, Z., Matejić, J., Sharifi-Rad, M., Monzote, L., María Valussi, G., ... & Sharifi-Rad, J. (2022). The therapeutic potential of Curcuma longa and curcumin: A review of clinical applications. Frontiers in Nutrition, 9, 1040259. https://www.frontiersin.org/articles/10.3389/fnut.2022.1040259/full

 

Wang, P., Li, H., Lin, Z., Luo, H., & Luo, W. (2021). Comparing the effect of piperine and ilepcimide on the pharmacokinetics of curcumin in SD rats. Frontiers in Pharmacology, 12, 725362. https://doi.org/10.3389/fphar.2021.725362

 
 
 
Cinnamon: A Whisper of Warmth

Anderson, R. A., Broadhurst, C. L., Polansky, M. M., Schmidt, W. F., Khan, A., Flanagan, V. P., Schoene, N. W., & Graves, D. J. (2004). Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. Journal of Agricultural and Food Chemistry, 52(1), 65–70. https://doi.org/10.1021/jf034916b

 

 

Ranasinghe, P., Pigera, S., Premakumara, G. A. S., Galappaththy, P., Constantine, G. R., & Katulanda, P. (2013). Medicinal properties of 'true' cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complementary and Alternative Medicine, 13, 275. https://doi.org/10.1186/1472-6882-13-275

 

 

Lu, T., Sheng, H., Wu, J., Cheng, Y., Zhu, J., Chen, Y., & Zhang, Y. (2012). Cinnamon extract improves fasting blood glucose and glycosylated hemoglobin level in Chinese patients with type 2 diabetes. Nutrition Research, 32(6), 408–412. https://doi.org/10.1016/j.nutres.2012.05.003

 

Zare, R., Vahidinia, A., Kooshki, A., & Mostafavi, S. M. (2019). Effects of cinnamon supplementation on expression of systemic inflammation factors, NF-kB and SIRT1 in type 2 diabetes: A randomized, double blind, and controlled clinical trial. Nutrition Journal, 18(1), 109. https://doi.org/10.1186/s12937-019-0518-3

 
 
 
 
Blueberries: The Brain on Blue

Bowtell, J. L., Aboo-Bakkar, Z., Conway, M. E., Adlam, A. R., & Fulford, J. (2017). Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Applied Physiology, Nutrition, and Metabolism, 42(7), 773–779. https://www.sciencedirect.com/science/article/pii/S0889159118311954

 

Stull, A. J., Cassidy, A., Djousse, L., Johnson, S. A., Krikorian, R., Lampe, J. W., Mukamal, K. J., Nieman, D. C., Porter Starr, K. N., Rasmussen, H., Rimm, E. B., Stote, K. S., & Tangney, C. (2024). The state of the science on the health benefits of blueberries: A perspective. Frontiers in Nutrition, 11, 1415737. https://www.frontiersin.org/articles/10.3389/fnut.2024.1415737/full

 

Lopresti, A. L., Smith, S. J., Pouchieu, C., Pourtau, L., Gaudout, D., Pallet, V., & Drummond, P. D. (2023).Effects of a polyphenol-rich grape and blueberry extract (Memophenol™) on cognitive function in older adults with mild cognitive impairment: A randomized, double-blind, placebo-controlled study. Frontiers in Psychology, 14, 1144231. https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1144231/full

Whyte, A. R., Cheng, N., Fromentin, E., & Williams, C. M. (2018). A randomized, double-blinded, placebo-controlled study to compare the safety and efficacy of low dose enhanced wild blueberry powder and wild blueberry extract (Think Blue) in maintenance of episodic and working memory in older adults. Nutrients, 10(6), 660. https://doi.org/10.3390/nu10060660

 
 
When Change Feels Impossible

 

Magistretti, P. J., & Allaman, I. (2015). A Cellular Perspective on Brain Energy Metabolism and Functional Imaging.Neuron, 86(4), 883–901. https://doi.org/10.1016/j.neuron.2015.03.035

 

Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K. M., Conrad, M., ... & Langemann, D. (2021). Brain More Resistant to Energy Restriction Than Body: A Systematic Review of the Selfish Brain Theory. Frontiers in Neuroscience, 15, 639617. https://doi.org/10.3389/fnins.2021.639617

Finsterwald, C. F. (2021). Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives.Frontiers in Physiology, 12, 825816. https://doi.org/10.3389/fphys.2021.825816

 

Vergara, R. C., Olivares, R., & Maldonado, P. E. (2019). The Energy Homeostasis Principle: Neuronal Energy Regulation Drives Behavior. Frontiers in Computational Neuroscience, 13, 49. https://doi.org/10.3389/fncom.2019.00049

 at the neuronal level can influence behavioral patterns and resistance to change.

 
 
 
The Carrot, Cooked or Raw: A Tale of Two Textures (and One Clever Gene)

 

Leung, W. C., Hessel, S., Méplan, C., Flint, J., Oberhauser, V., Tourniaire, F., Hesketh, J. E., von Lintig, J., & Lietz, G. (2009). Two common single nucleotide polymorphisms in the gene encoding β-carotene 15,15′-monoxygenase alter β-carotene metabolism in female volunteers. The FASEB Journal, 23(4), 1041–1053. https://doi.org/10.1096/fj.08-121962

 

Miglio, C., Chiavaro, E., Visconti, A., Fogliano, V., & Pellegrini, N. (2008). Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. Journal of Agricultural and Food Chemistry, 56(1), 139–147. https://doi.org/10.1021/jf072304b

 

Rock, C. L., & Swendseid, M. E. (1992). Plasma beta-carotene response in humans after meals supplemented with dietary pectin. The American Journal of Clinical Nutrition, 55(1), 96–99. https://doi.org/10.1093/ajcn/55.1.96

 

Tourniaire, F., Gouranton, E., von Lintig, J., Keijer, J., Bonet, M. L., Amengual, J., Lietz, G., & Landrier, J.-F.(2009). β-Carotene conversion products and their effects on adipose tissue. Genes & Nutrition, 4, 179–187. https://doi.org/10.1007/s12263-009-0128-3

 
 
 
Broccoli and its Overachieving Sprout

 

Fahey, J. W., Zhang, Y., & Talalay, P. (1997). Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences, 94(19), 10367–10372. https://doi.org/10.1073/pnas.94.19.10367

 

Houghton, C. A. (2019). Sulforaphane: Its ‘Coming of Age’ as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. Oxidative Medicine and Cellular Longevity, 2019, Article ID 2716870. https://doi.org/10.1155/2019/2716870

 

Jeffery, E. H., Brown, A. F., Kurilich, A. C., Keck, A. S., Matusheski, N., Klein, B. P., & Juvik, J. A. (2003). Variation in content of bioactive components in broccoli. Journal of Food Composition and Analysis, 16(3), 323–330. https://doi.org/10.1016/S0889-1575(02)00153-7

 

Vermeulen, M., Klöpping-Ketelaars, I. W., van den Berg, R., & Vaes, W. H. (2008). Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli. Journal of Agricultural and Food Chemistry, 56(22), 10505–10509. https://doi.org/10.1021/jf801989e

 
 
Adaptogens & Ancestry: Are These Herbs for You?

 

Aremu, A. O., Luo, B., & Mussarat, S. (2024). Medical ethnobotany: A collection of studies on the ethnobotanical uses of medicinal plants. BMC Complementary Medicine and Therapies, 24, Article 216. https://doi.org/10.1186/s12906-024-04515-0

 

Panossian, A., & Wikman, G. (2010). Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress—Protective Activity. Pharmaceuticals, 3(1), 188–224. https://doi.org/10.3390/ph3010188

 

Mukherjee, S., Banerjee, S., Heinrich, M., Wu, W., Guo, D., & Wagner, H. (2020). Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases. Medicinal Research Reviews, 40(2), 630–700. https://doi.org/10.1002/med.21743

 

Vasanthi, A. V., Gayatri, B. M., Sreeja, C., Nitiashwarya, G., Sruthi, C., Thanmai, A., & Ravi Kumar, P. (2023). The Role of Adaptogenic Herbs in Combating Stress: A Review of Historical and Modern Perspectives. International Journal of Advanced Research in Science, Communication and Technology, 4(1), 45–52. https://www.ijarsct.co.in/Paper23102.pdf

Oats & Gluten: Why the Confusion?

Coeliac Australia Position Statement on Oats (2021) https://www.coeliac.org.au/s/article/Are-oats-gluten-free

 

Codex Alimentarius Commission (FAO/WHO) Standard for Foods for Special Dietary Use for Persons Intolerant to Gluten – CODEX STAN 118-1979 (Amended 2015) https://www.fao.org/fao-who-codexalimentarius

FDA (USA) Guidance for Industry “Gluten-Free Labeling of Foods” – Updated 2020 https://www.fda.gov

Food Standards Australia New Zealand (FSANZ) Standard 1.2.7 – Nutrition, Health and Related Claims; and Schedule 4 – Nutrition, Health and Related Claims. https://www.foodstandards.gov.au/code/Pages/default.aspx

​Pinto-Sánchez, M. I. et al. (2017). “Safety of Adding Oats to the Gluten-Free Diet for Patients With Celiac Disease: Systematic Review and Meta-analysis of Clinical and Observational Studies.” Gastroenterology, 153(2), 395–409. https://doi.org/10.1053/j.gastro.2017.04.009

 

 

Omega-3s - Where will you get yours?

 

CSIRO. (n.d.). Sustainable production of omega-3 oils. Retrieved from https://www.csiro.au/en/research/plants/crops/Oil-crops/algae-omega3s

Our World in Data. (n.d.). Fish and Overfishing. Retrieved from https://ourworldindata.org/fish-and-overfishing

Off the Table. (n.d.). Not a Superfood: The Truth About Farmed Salmon. Retrieved from https://offthetable.org.au/

Harvard T.H. Chan School of Public Health. (n.d.). Omega-3 Fatty Acids: An Essential Contribution. Retrieved from https://nutritionsource.hsph.harvard.edu/what-should-you-eat/fats-and-cholesterol/types-of-fat/omega-3-fats/

 
 
The Great Omega Debate

Blasbalg, T. L., Hibbeln, J. R., Ramsden, C. E., Majchrzak, S. F., & Rawlings, R. R. (2011). Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. The American Journal of Clinical Nutrition, 93(5), 950–962. https://doi.org/10.3945/ajcn.110.006643

 

Calder, P. C. (2006). n−3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. The American Journal of Clinical Nutrition, 83(6), 1505S–1519S. https://doi.org/10.1093/ajcn/83.6.1505S

 

Calder, P. C. (2015). Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1851(4), 469–484.https://doi.org/10.1016/j.bbalip.2014.08.010

 

Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8), 365–379. https://doi.org/10.1016/S0753-3322(02)00253-6

Schmitz, G., & Ecker, J. (2008). The opposing effects of n-3 and n-6 fatty acids. Progress in Lipid Research, 47(2), 147–155. https://doi.org/10.1016/j.plipres.2007.12.004

 
 
 
Fats, Function, and the Foods That Carry Them

Gładkowski, W., et al. (2018). Associations between fatty acid intake and status, desaturase activities, and FADS gene polymorphism in postmenopausal Polish women. Nutrients, 10(8), 1068. https://www.mdpi.com/2072-6643/10/8/1068

Kawakami, A., Aikawa, T., & Kondo, K. (2024). Insight into the effects of Omega-3 fatty acids on gut microbiota and their role in health and disease. Frontiers in Nutrition, 11, 1575323. https://doi.org/10.3389/fnut.2025.1575323

Khodarahmi, M., et al. (2021). The interaction between fatty acid desaturase-2 (FADS2) rs174583 genetic variant and dietary quality indices constructs different metabolic phenotypes among obese individuals. Frontiers in Nutrition, 8, Article 669207. https://www.frontiersin.org/articles/10.3389/fnut.2021.669207/full

Kris-Etherton, P. M., Petersen, K. S., Hibbeln, J. R., Hurley, D., Kolick, V., Peoples, S., & Fleming, J. A.(2020). Saturated fats and health: A reassessment and proposal for food-based recommendations. Journal of the American College of Cardiology, 76(7), 844–857. https://doi.org/10.1016/j.jacc.2020.05.077

Li, Y., Tang, H., Yang, X., Ma, L., Zhou, H., Zhang, G., Chen, X., Ma, L., Gao, J., & Ji, W. (2024). Associations of ω-3, ω-6 polyunsaturated fatty acids intake and ω-6: ω-3 ratio with systemic immune and inflammatory biomarkers: NHANES 1999–2020. Frontiers in Nutrition, 11, 1410154. https://doi.org/10.3389/fnut.2024.1410154

Lemaitre, R. N., King, I. B., Mozaffarian, D., Kuller, L. H., Tracy, R. P., & Siscovick, D. S. (2003). n–3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: The Cardiovascular Health Study. The American Journal of Clinical Nutrition, 77(2), 319–325. https://doi.org/10.1093/ajcn/77.2.319

 

Sienski, G., Narayan, P., Bonner, J. M., Kory, N., Boland, S., Arczewska, A. A., ... & Tsai, L.-H. (2021). APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Science Translational Medicine, 13(583), eaaz4564. https://doi.org/10.1126/scitranslmed.aaz456

 
The Vagus Neve: The Thread Between Calm and Chaos

 

Breit, S., Kupferberg, A., Rogler, G., & Hasler, G. (2018). Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Frontiers in Psychiatry, 9, 44. https://doi.org/10.3389/fpsyt.2018.00044

 

ScienceDirect Topics. (n.d.). Vagus nerve – an overview. Elsevier. https://www.sciencedirect.com/topics/neuroscience/vagus-nerve

Peña, D. F., Engineer, N. D., & McIntyre, C. K. (2023). Vagus nerve stimulation: Mechanisms and factors involved in memory consolidation. Frontiers in Human Neuroscience, 17, 1152064. https://doi.org/10.3389/fnhum.2023.1152064

Korupolu, R., Miller, A., Park, A., & Yozbatiran, N. (2024). Neurorehabilitation with vagus nerve stimulation: A systematic review. Frontiers in Neurology, 15, 1390217. https://doi.org/10.3389/fneur.2024.1390217

 
 
 
Histamine - The Signal that Never Shuts Up

 

Shulpekova, Y.O., et al. (2021). Food Intolerance: The Role of Histamine. Nutrients, 13(9), 3207. https://www.mdpi.com/2072-6643/13/9/3207
https://doi.org/10.3390/nu13093207

 

Agúndez, J.A.G., et al. (2012). The Diamine Oxidase Gene Is Associated with Hypersensitivity Response to Non-Steroidal Anti-Inflammatory Drugs. PLOS ONE, 7(11), e47571. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047571 https://doi.org/10.1371/journal.pone.0047571

 

Shahid, M., et al. (2009). Histamine, Histamine Receptors, and their Role in Immunomodulation: An Updated Systematic Review. The Open Immunology Journal, 2, 9–41. https://benthamopen.com/contents/pdf/TOIJ/TOIJ-2-9.pdf

 

Kettner, L., Seitl, I., & Fischer, L. (2022). Recent advances in the application of microbial diamine oxidases and other histamine-oxidizing enzymes. World Journal of Microbiology and Biotechnology, 38, 232. https://link.springer.com/article/10.1007/s11274-022-03421-2 https://doi.org/10.1007/s11274-022-03421-2

 

Comas-Basté, O., et al. (2022). The Rate of Histamine Degradation by Diamine Oxidase Is Compromised by Other Biogenic Amines. Frontiers in Nutrition, 9, 897028. https://www.frontiersin.org/articles/10.3389/fnut.2022.897028/full https://doi.org/10.3389/fnut.2022.897028

 

Adrenaline: The Methylated Messenger

Anderson, O. S., Sant, K. E., & Dolinoy, D. C. (2012). Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. Journal of Nutritional Biochemistry, 23(8), 853–859. https://doi.org/10.1016/j.jnutbio.2012.03.003 

 

Aronson JK. "Where name and image meet"--the argument for "adrenaline". BMJ. 2000 Feb 19;320(7233):506-9. doi: 10.1136/bmj.320.7233.506. PMID: 10678871; PMCID: PMC1127537

 

Eiden, L. E., & Eisenhofer, G. (2018). Catecholamine biosynthesis, storage, release, uptake, and metabolism. Frontiers in Endocrinology, 9, 343. https://www.frontiersin.org/articles/10.3389/fendo.2018.00343/full

→ Covers the full pathway of epinephrine synthesis, highlighting the methylation of norepinephrine by PNMT. 

 

Eisenhofer, G., Kopin, I. J., & Goldstein, D. S. (2004). Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacological Reviews, 56(3), 331–349. https://doi.org/10.1124/pr.56.3.1

 

Kvetnansky, R., Sabban, E. L., & Palkovits, M. (2009). Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiological Reviews, 89(2), 535–606. https://doi.org/10.1152/physrev.00042.2006

 
Acetylcholine — The Neurotransmitter of Attention, Memory and Movement

Świt, P., Pollap, A., & Orzeł, J. (2023). Spectroscopic Determination of Acetylcholine (ACh): A Representative Review. Topics in Current Chemistry, 381(16).https://link.springer.com/article/10.1007/s41061-023-00426-9https://doi.org/10.1007/s41061-023-00426-9

 

Cleveland Clinic. (2022). Acetylcholine (ACh): What It Is, Function & Deficiency. https://my.clevelandclinic.org/health/articles/24568-acetylcholine-ach

 
 
 
Glutamine — The Quiet Bridge Between Brain and Body

de Oliveira, D.C., Lima, F.S., Sartori, T., Santos, A.C.A., Rogero, M.M., & Fock, R.A. (2016). Glutamine metabolism and its effects on immune response: molecular mechanism and gene expression. Nutrire, 41, 14.
https://link.springer.com/article/10.1186/s41110-016-0016-8 https://doi.org/10.1186/s41110-016-0016-8

Zhou, Y., & Danbolt, N.C. (2014). Glutamate as a neurotransmitter in the healthy brain. Journal of Neural Transmission, 121(8), 799–817.
https://link.springer.com/article/10.1007/s00702-014-1180-8 https://doi.org/10.1007/s00702-014-1180-8

Byrne, M. (2023). Monitoring and modelling the glutamine metabolic pathway: a review and perspectives.Metabolomics, 19, 31.
https://link.springer.com/article/10.1007/s11306-023-02031-9 https://doi.org/10.1007/s11306-023-02031-9

Li, S., et al. (2021). The role of glutamine in supporting gut health and neuropsychiatric disorders. Clinical Nutrition ESPEN, 41, 9–14.
https://www.sciencedirect.com/science/article/pii/S2213453021000112 https://doi.org/10.1016/j.clnesp.2021.01.003

Zhou, Y., & Danbolt, N.C. (2014). Glutamate as a neurotransmitter in the healthy brain. Journal of Neural Transmission, 121(8), 799–817.
https://link.springer.com/article/10.1007/s00702-014-1180-8 https://doi.org/10.1007/s00702-014-1180-8

 
 
 
GABA: The Brake Pedal in a World That Only Speeds Up

 

Engin, E., Engin, A. B., & Treit, D. (2022). GABA<sub>A</sub> receptor subtypes and benzodiazepine use, misuse, and abuse. Frontiers in Psychiatry, 13, 1060949. https://doi.org/10.3389/fpsyt.2022.1060949

 

Hinton, T., & Johnston, G. A. R. (2024). GABA, epigallocatechin gallate, tea, and the gut-brain axis. Neurochemistry International, 180, 105860. https://doi.org/10.1016/j.neuint.2024.105860 

 

Strandwitz, P., Kim, K. H., Terekhova, D., Liu, J. K., Sharma, A., Levering, J., ... & Lewis, K. (2021). GABA-modulating bacteria of the human gut microbiota. Frontiers in Microbiology, 12, 656895. https://doi.org/10.3389/fmicb.2021.656895

 

Zhao, D., Xie, X., Liu, Y., & Liu, B. (2025). Advances in engineering and applications of microbial glutamate decarboxylase. Process Biochemistry, 134, 25–33. https://doi.org/10.1016/j.procbio.2024.09.005

 
 
Glutamate — The Spark of the Synapse

Zhou, Y., & Danbolt, N.C. (2014). Glutamate as a neurotransmitter in the healthy brain. Brain Research, 1575, 1–17.
https://link.springer.com/article/10.1007/s00702-014-1180-8 https://doi.org/10.1007/s00702-014-1180-8

 

Pal, M.M. (2021). Glutamate: The master neurotransmitter and its implications in chronic stress and mood disorders. Frontiers in Human Neuroscience, 15, 722323. https://www.frontiersin.org/articles/10.3389/fnhum.2021.722323/full https://doi.org/10.3389/fnhum.2021.722323

 

T

Cleveland Clinic. (2022). Glutamate: What it is & function. https://my.clevelandclinic.org/health/articles/22839-glutamate

 

Danbolt, N.C. (2001). Glutamate uptake. Progress in Neurobiology, 65(1), 1–105.
https://www.sciencedirect.com/science/article/pii/S0301008200000678 https://doi.org/10.1016/S0301-0082(00)00067-8

 
 
Dopamine: The Drive to Get Going

 

Archer, N., Aggarwal, B., & Rukundo, G. (2024). Association between dopamine genes, adiposity, food addiction, and eating behavior traits in adults with obesity. Frontiers in Nutrition, 11, 1466384. https://doi.org/10.3389/fnut.2024.1466384

 

Davis, C., Loxton, N. J., Levitan, R. D., Kaplan, A. S., Carter, J. C., & Kennedy, J. L. (2013). ‘Food addiction’ and its association with a dopaminergic multilocus genetic profile. Physiology & Behavior, 118, 63–69. https://doi.org/10.1016/j.physbeh.2013.05.014

 

Blum, K., Thanos, P. K., & Gold, M. S. (2014). Dopamine and glucose, obesity, and reward deficiency syndrome. Frontiers in Psychology, 5, 919. https://doi.org/10.3389/fpsyg.2014.00919

 

Volkow, N. D., Wang, G.-J., Tomasi, D., & Baler, R. D. (2011). The addictive dimensionality of obesity. Trends in Cognitive Sciences, 15(9), 377–386. https://doi.org/10.1016/j.tics.2011.06.003

 

Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Frontiers in Neural Circuits, 7, 152. https://doi.org/10.3389/fncir.2013.00152

 

Serotonin — The Steady Hand in the Storm

Irum, N., Afzal, T., Faraz, M.H., Aslam, Z., & Rasheed, F. (2023). The role of gut microbiota in depression: An analysis of the gut-brain axis. Frontiers in Behavioral Neuroscience, 17, Article 1185522. https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1185522
https://doi.org/10.3389/fnbeh.2023.1185522

Liu, Y., et al. (2025). Multiple pathways through which the gut microbiota regulates neuronal mitochondrial function in depression. Frontiers in Microbiology, 16, Article 1578155. https://www.frontiersin.org/articles/10.3389/fmicb.2025.1578155 https://doi.org/10.3389/fmicb.2025.1578155

 

Zhao, D., et al. (2024). Dual sources of melatonin and evidence for different regulatory mechanisms in the pineal gland and retina. Frontiers in Endocrinology, 15, Article 1414463. https://www.frontiersin.org/articles/10.3389/fendo.2024.1414463 https://doi.org/10.3389/fendo.2024.1414463

Melatonin — The Molecule of Darkness

Buonfiglio, D., Tchio, C., & Tosini, G. (2019). Melatonin signaling: A key regulator of glucose homeostasis and energy metabolism. Frontiers in Endocrinology, 10, Article 488. https://www.frontiersin.org/articles/10.3389/fendo.2019.00488 https://doi.org/10.3389/fendo.2019.00488

 

Wang, X., et al. (2023). Nocturnal melatonin increases glucose uptake via insulin signaling in the hypothalamus.Frontiers in Endocrinology, 14, Article 1173113. https://www.frontiersin.org/articles/10.3389/fendo.2023.1173113 https://doi.org/10.3389/fendo.2023.1173113

 

 

Zhao, D., et al. (2024). Dual sources of melatonin and evidence for different regulatory mechanisms in the pineal gland and retina. Frontiers in Endocrinology, 15, Article 1414463. https://www.frontiersin.org/articles/10.3389/fendo.2024.1414463 https://doi.org/10.3389/fendo.2024.1414463

Circadian Rhythm: Your Body's Original Schedule

Bouâouda, H., & Jha, S.K. (2024). Editorial: Recent advances in sleep and circadian rhythms in appetite and energy intake. Frontiers in Neuroscience, 18, Article 1385619. https://www.frontiersin.org/articles/10.3389/fnins.2024.1385619https://doi.org/10.3389/fnins.2024.1385619

 

Strobel, C., et al. (2024). Editorial: Sleep and circadian rhythms in plasticity and memory. Frontiers in Systems Neuroscience, 18, Article 1351714.
https://www.frontiersin.org/articles/10.3389/fnsys.2024.1351714 https://doi.org/10.3389/fnsys.2024.1351714

 

Veasey, S.C., & Zee, P.C. (2021). Editorial: Roles of sleep disruption and circadian rhythm dysfunction in neurodegeneration. Frontiers in Neuroscience, 15, Article 737895. https://www.frontiersin.org/articles/10.3389/fnins.2021.737895 https://doi.org/10.3389/fnins.2021.737895

Sleep — The Most Honest Feedback Loop You Have

Bouâouda, H., & Jha, S.K. (2024). Editorial: Recent advances in sleep and circadian rhythms in appetite and energy intake. Frontiers in Neuroscience, 18, Article 1385619. https://www.frontiersin.org/articles/10.3389/fnins.2024.1385619 https://doi.org/10.3389/fnins.2024.1385619

 

Strobel, C., et al. (2024). Editorial: Sleep and circadian rhythms in plasticity and memory. Frontiers in Systems Neuroscience, 18, Article 1351714.
https://www.frontiersin.org/articles/10.3389/fnsys.2024.1351714 https://doi.org/10.3389/fnsys.2024.1351714

 

Veasey, S.C., & Zee, P.C. (2021). Editorial: Roles of sleep disruption and circadian rhythm dysfunction in neurodegeneration. Frontiers in Neuroscience, 15, Article 737895. https://www.frontiersin.org/articles/10.3389/fnins.2021.737895 https://doi.org/10.3389/fnins.2021.737895

The Fire Inside — Energy, Oxidative Stress, & How We Burn Without Breaking

 

Meyer, A., Laverny, G., Bernardi, L., Charles, A.L., Alsaleh, G., Pottecher, J., Sibilia, J., & Geny, B. (2018). Mitochondria: An organelle of bacterial origin controlling inflammation. Frontiers in Immunology, 9, Article 536. https://www.frontiersin.org/articles/10.3389/fimmu.2018.00536
https://doi.org/10.3389/fimmu.2018.00536

 

Staal, J., Blanco, L.P., & Perl, A. (2023). Editorial: Mitochondrial dysfunction in inflammation and autoimmunity.Frontiers in Immunology, 14, Article 1304315. https://www.frontiersin.org/articles/10.3389/fimmu.2023.1304315 https://doi.org/10.3389/fimmu.2023.1304315

 

Xu, X., Ou, W., Zhang, Y., et al. (2023). Mitochondria in innate immunity signaling and its implication in autoimmune diseases. Frontiers in Immunology, 14, Article 1160035. https://www.frontiersin.org/articles/10.3389/fimmu.2023.1160035 https://doi.org/10.3389/fimmu.2023.1160035

​​

Where Energy Begins

References

Lodish, H., Berk, A., Zipursky, S.L., et al. (2000). Principles of bioenergetics and mitochondria. In Molecular Cell Biology (4th ed.). W.H. Freeman. https://www.ncbi.nlm.nih.gov/books/NBK2882/

Nicholls, D.G., & Ferguson, S.J. (2013). Bioenergetics 4. Academic Press. https://www.sciencedirect.com/book/9780123884251/bioenergetics

​​Roger, A.J., Muñoz-Gómez, S.A., & Kamikawa, R. (2017). The origin and diversification of mitochondria. Current Biology, 27(21), R1177–R1192.
https://www.sciencedirect.com/science/article/pii/S096098221731179X 

 

Wallace, D.C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of Genetics, 39, 359–407. https://www.annualreviews.org/doi/10.1146/annurev.genet.39.110304.095751

The Body’s Blueprint
 

References

MIT Department of Biology. (n.d.). The Blueprint of a Body: How Cells Know What They’re Building. https://biology.mit.edu/the-blueprint-of-a-body/

 

National Human Genome Research Institute (NHGRI):. https://www.genome.gov/about-genomics

Phys.org. (2007). Explorer Completes the Map for the Body's Blueprint. https://phys.org/news/2007-09-explorer-body-blueprint.html

National Institutes of Health. (2011). Biological Blueprints. NIH News in Health. https://newsinhealth.nih.gov/2011/01/biological-blueprints

What a Nutrition DNA Test Can Tell You — and Is the Science There?

References

Cornelis, M.C., El-Sohemy, A., Kabagambe, E.K., & Campos, H. (2006). Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA, 295(10), 1135–1141. https://jamanetwork.com/journals/jama/fullarticle/202502

Feil, R., & Fraga, M.F. (2012). Epigenetics and the environment: Emerging patterns and implications. Nature Reviews Genetics, 13(2), 97–109.https://www.nature.com/articles/nrg3142

Livingstone, K.M., Celis-Morales, C., Navas-Carretero, S., et al. (2016). Effect of personalized nutrition on health-related behaviour change: Evidence from the Food4Me European randomized controlled trial. International Journal of Epidemiology, 45(2), 578–588.

https://academic.oup.com/ije/article/45/2/578/2572581

Müller, M., & Kersten, S. (2003). Nutrigenomics: Goals and strategies. Nature Reviews Genetics, 4(4), 315–322. 

https://www.nature.com/articles/nrg1047

Nielsen, D.E., & El-Sohemy, A. (2014). Disclosure of genetic information and change in dietary intake: A randomized controlled trial. PLOS ONE, 9(11), e112665. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112665

Svetkey, L.P., Moore, T.J., Funk, K., et al. (1996). Renin-angiotensin system genetic polymorphisms and salt sensitivity in essential hypertension. Hypertension, 28(6), 944–952. https://www.ahajournals.org/doi/10.1161/01.HYP.28.6.944

Weinberger, M.H., Fineberg, N.S., Fineberg, S.E., & Weinberger, M.W. (2001). Blood pressure and interactions between the angiotensin polymorphism AGT M235T and sodium intake: A cross-sectional population study. The American Journal of Clinical Nutrition, 74(3), 403–409. https://academic.oup.com/ajcn/article/74/3/403/4737432

Now Nourished

CLINICAL NUTRITION
  • Instagram

We acknowledge the urrbul and Jagera peoples as Traditional Custodians of this land, and pay respect to Elders past, present. We honour their deep and ongoing connection to land, food, and culture.

© 2025 NOW NOURISHED  ALL RIGHTS RESERVED.

bottom of page