
References & Readings
These are the research roots behind the stories—because science and real life can sit at the same table.
The blog posts shared here are shaped by years of study, clinical experience, and a steady stream of research and reading. They’re written to be clear, personal, and useful—but always grounded in evidence.
This page holds the references that support those ideas. Organised by blog. Updated often.
For the extra curious.
Turmeric: Old Gold, New Signals
Cozmin, M., Popescu, R., & Tohănean, D. (2024). Turmeric: From spice to cure. A review of the anti-cancer, radioprotective and anti-inflammatory effects of turmeric sourced compounds. Frontiers in Nutrition, 11, 1399888. https://www.frontiersin.org/articles/10.3389/fnut.2024.1399888/full
Gupta, S. C., Sung, B., Kim, J. H., Prasad, S., Li, S., & Aggarwal, B. B. (2022). Multitargeting by turmeric, the golden spice: From kitchen to clinic. Frontiers in Pharmacology, 13, 820806. https://www.frontiersin.org/articles/10.3389/fphar.2022.820806/full
Salehi, B., Stojanović-Radić, Z., Matejić, J., Sharifi-Rad, M., Monzote, L., María Valussi, G., ... & Sharifi-Rad, J. (2022). The therapeutic potential of Curcuma longa and curcumin: A review of clinical applications. Frontiers in Nutrition, 9, 1040259. https://www.frontiersin.org/articles/10.3389/fnut.2022.1040259/full
Wang, P., Li, H., Lin, Z., Luo, H., & Luo, W. (2021). Comparing the effect of piperine and ilepcimide on the pharmacokinetics of curcumin in SD rats. Frontiers in Pharmacology, 12, 725362. https://doi.org/10.3389/fphar.2021.725362
Cinnamon: A Whisper of Warmth
Anderson, R. A., Broadhurst, C. L., Polansky, M. M., Schmidt, W. F., Khan, A., Flanagan, V. P., Schoene, N. W., & Graves, D. J. (2004). Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. Journal of Agricultural and Food Chemistry, 52(1), 65–70. https://doi.org/10.1021/jf034916b
Ranasinghe, P., Pigera, S., Premakumara, G. A. S., Galappaththy, P., Constantine, G. R., & Katulanda, P. (2013). Medicinal properties of 'true' cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complementary and Alternative Medicine, 13, 275. https://doi.org/10.1186/1472-6882-13-275
Lu, T., Sheng, H., Wu, J., Cheng, Y., Zhu, J., Chen, Y., & Zhang, Y. (2012). Cinnamon extract improves fasting blood glucose and glycosylated hemoglobin level in Chinese patients with type 2 diabetes. Nutrition Research, 32(6), 408–412. https://doi.org/10.1016/j.nutres.2012.05.003
Zare, R., Vahidinia, A., Kooshki, A., & Mostafavi, S. M. (2019). Effects of cinnamon supplementation on expression of systemic inflammation factors, NF-kB and SIRT1 in type 2 diabetes: A randomized, double blind, and controlled clinical trial. Nutrition Journal, 18(1), 109. https://doi.org/10.1186/s12937-019-0518-3
Blueberries: The Brain on Blue
Bowtell, J. L., Aboo-Bakkar, Z., Conway, M. E., Adlam, A. R., & Fulford, J. (2017). Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Applied Physiology, Nutrition, and Metabolism, 42(7), 773–779. https://www.sciencedirect.com/science/article/pii/S0889159118311954
Stull, A. J., Cassidy, A., Djousse, L., Johnson, S. A., Krikorian, R., Lampe, J. W., Mukamal, K. J., Nieman, D. C., Porter Starr, K. N., Rasmussen, H., Rimm, E. B., Stote, K. S., & Tangney, C. (2024). The state of the science on the health benefits of blueberries: A perspective. Frontiers in Nutrition, 11, 1415737. https://www.frontiersin.org/articles/10.3389/fnut.2024.1415737/full
Lopresti, A. L., Smith, S. J., Pouchieu, C., Pourtau, L., Gaudout, D., Pallet, V., & Drummond, P. D. (2023).Effects of a polyphenol-rich grape and blueberry extract (Memophenol™) on cognitive function in older adults with mild cognitive impairment: A randomized, double-blind, placebo-controlled study. Frontiers in Psychology, 14, 1144231. https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1144231/full
Whyte, A. R., Cheng, N., Fromentin, E., & Williams, C. M. (2018). A randomized, double-blinded, placebo-controlled study to compare the safety and efficacy of low dose enhanced wild blueberry powder and wild blueberry extract (Think Blue) in maintenance of episodic and working memory in older adults. Nutrients, 10(6), 660. https://doi.org/10.3390/nu10060660
When Change Feels Impossible
Magistretti, P. J., & Allaman, I. (2015). A Cellular Perspective on Brain Energy Metabolism and Functional Imaging.Neuron, 86(4), 883–901. https://doi.org/10.1016/j.neuron.2015.03.035
Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K. M., Conrad, M., ... & Langemann, D. (2021). Brain More Resistant to Energy Restriction Than Body: A Systematic Review of the Selfish Brain Theory. Frontiers in Neuroscience, 15, 639617. https://doi.org/10.3389/fnins.2021.639617
Finsterwald, C. F. (2021). Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives.Frontiers in Physiology, 12, 825816. https://doi.org/10.3389/fphys.2021.825816
Vergara, R. C., Olivares, R., & Maldonado, P. E. (2019). The Energy Homeostasis Principle: Neuronal Energy Regulation Drives Behavior. Frontiers in Computational Neuroscience, 13, 49. https://doi.org/10.3389/fncom.2019.00049
at the neuronal level can influence behavioral patterns and resistance to change.
The Carrot, Cooked or Raw: A Tale of Two Textures (and One Clever Gene)
Leung, W. C., Hessel, S., Méplan, C., Flint, J., Oberhauser, V., Tourniaire, F., Hesketh, J. E., von Lintig, J., & Lietz, G. (2009). Two common single nucleotide polymorphisms in the gene encoding β-carotene 15,15′-monoxygenase alter β-carotene metabolism in female volunteers. The FASEB Journal, 23(4), 1041–1053. https://doi.org/10.1096/fj.08-121962
Miglio, C., Chiavaro, E., Visconti, A., Fogliano, V., & Pellegrini, N. (2008). Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. Journal of Agricultural and Food Chemistry, 56(1), 139–147. https://doi.org/10.1021/jf072304b
Rock, C. L., & Swendseid, M. E. (1992). Plasma beta-carotene response in humans after meals supplemented with dietary pectin. The American Journal of Clinical Nutrition, 55(1), 96–99. https://doi.org/10.1093/ajcn/55.1.96
Tourniaire, F., Gouranton, E., von Lintig, J., Keijer, J., Bonet, M. L., Amengual, J., Lietz, G., & Landrier, J.-F.(2009). β-Carotene conversion products and their effects on adipose tissue. Genes & Nutrition, 4, 179–187. https://doi.org/10.1007/s12263-009-0128-3
Broccoli and its Overachieving Sprout
Fahey, J. W., Zhang, Y., & Talalay, P. (1997). Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences, 94(19), 10367–10372. https://doi.org/10.1073/pnas.94.19.10367
Houghton, C. A. (2019). Sulforaphane: Its ‘Coming of Age’ as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. Oxidative Medicine and Cellular Longevity, 2019, Article ID 2716870. https://doi.org/10.1155/2019/2716870
Jeffery, E. H., Brown, A. F., Kurilich, A. C., Keck, A. S., Matusheski, N., Klein, B. P., & Juvik, J. A. (2003). Variation in content of bioactive components in broccoli. Journal of Food Composition and Analysis, 16(3), 323–330. https://doi.org/10.1016/S0889-1575(02)00153-7
Vermeulen, M., Klöpping-Ketelaars, I. W., van den Berg, R., & Vaes, W. H. (2008). Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli. Journal of Agricultural and Food Chemistry, 56(22), 10505–10509. https://doi.org/10.1021/jf801989e
Adaptogens & Ancestry: Are These Herbs for You?
Aremu, A. O., Luo, B., & Mussarat, S. (2024). Medical ethnobotany: A collection of studies on the ethnobotanical uses of medicinal plants. BMC Complementary Medicine and Therapies, 24, Article 216. https://doi.org/10.1186/s12906-024-04515-0
Panossian, A., & Wikman, G. (2010). Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress—Protective Activity. Pharmaceuticals, 3(1), 188–224. https://doi.org/10.3390/ph3010188
Mukherjee, S., Banerjee, S., Heinrich, M., Wu, W., Guo, D., & Wagner, H. (2020). Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases. Medicinal Research Reviews, 40(2), 630–700. https://doi.org/10.1002/med.21743
Vasanthi, A. V., Gayatri, B. M., Sreeja, C., Nitiashwarya, G., Sruthi, C., Thanmai, A., & Ravi Kumar, P. (2023). The Role of Adaptogenic Herbs in Combating Stress: A Review of Historical and Modern Perspectives. International Journal of Advanced Research in Science, Communication and Technology, 4(1), 45–52. https://www.ijarsct.co.in/Paper23102.pdf
Oats & Gluten: Why the Confusion?
Coeliac Australia Position Statement on Oats (2021) https://www.coeliac.org.au/s/article/Are-oats-gluten-free
Codex Alimentarius Commission (FAO/WHO) Standard for Foods for Special Dietary Use for Persons Intolerant to Gluten – CODEX STAN 118-1979 (Amended 2015) https://www.fao.org/fao-who-codexalimentarius
FDA (USA) Guidance for Industry “Gluten-Free Labeling of Foods” – Updated 2020 https://www.fda.gov
Food Standards Australia New Zealand (FSANZ) Standard 1.2.7 – Nutrition, Health and Related Claims; and Schedule 4 – Nutrition, Health and Related Claims. https://www.foodstandards.gov.au/code/Pages/default.aspx
Pinto-Sánchez, M. I. et al. (2017). “Safety of Adding Oats to the Gluten-Free Diet for Patients With Celiac Disease: Systematic Review and Meta-analysis of Clinical and Observational Studies.” Gastroenterology, 153(2), 395–409. https://doi.org/10.1053/j.gastro.2017.04.009
Omega-3s - Where will you get yours?
CSIRO. (n.d.). Sustainable production of omega-3 oils. Retrieved from https://www.csiro.au/en/research/plants/crops/Oil-crops/algae-omega3s
Our World in Data. (n.d.). Fish and Overfishing. Retrieved from https://ourworldindata.org/fish-and-overfishing
Off the Table. (n.d.). Not a Superfood: The Truth About Farmed Salmon. Retrieved from https://offthetable.org.au/
Harvard T.H. Chan School of Public Health. (n.d.). Omega-3 Fatty Acids: An Essential Contribution. Retrieved from https://nutritionsource.hsph.harvard.edu/what-should-you-eat/fats-and-cholesterol/types-of-fat/omega-3-fats/
The Great Omega Debate
Blasbalg, T. L., Hibbeln, J. R., Ramsden, C. E., Majchrzak, S. F., & Rawlings, R. R. (2011). Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. The American Journal of Clinical Nutrition, 93(5), 950–962. https://doi.org/10.3945/ajcn.110.006643
Calder, P. C. (2006). n−3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. The American Journal of Clinical Nutrition, 83(6), 1505S–1519S. https://doi.org/10.1093/ajcn/83.6.1505S
Calder, P. C. (2015). Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1851(4), 469–484.https://doi.org/10.1016/j.bbalip.2014.08.010
Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8), 365–379. https://doi.org/10.1016/S0753-3322(02)00253-6
Schmitz, G., & Ecker, J. (2008). The opposing effects of n-3 and n-6 fatty acids. Progress in Lipid Research, 47(2), 147–155. https://doi.org/10.1016/j.plipres.2007.12.004
Fats, Function, and the Foods That Carry Them
Gładkowski, W., et al. (2018). Associations between fatty acid intake and status, desaturase activities, and FADS gene polymorphism in postmenopausal Polish women. Nutrients, 10(8), 1068. https://www.mdpi.com/2072-6643/10/8/1068
Kawakami, A., Aikawa, T., & Kondo, K. (2024). Insight into the effects of Omega-3 fatty acids on gut microbiota and their role in health and disease. Frontiers in Nutrition, 11, 1575323. https://doi.org/10.3389/fnut.2025.1575323
Khodarahmi, M., et al. (2021). The interaction between fatty acid desaturase-2 (FADS2) rs174583 genetic variant and dietary quality indices constructs different metabolic phenotypes among obese individuals. Frontiers in Nutrition, 8, Article 669207. https://www.frontiersin.org/articles/10.3389/fnut.2021.669207/full
Kris-Etherton, P. M., Petersen, K. S., Hibbeln, J. R., Hurley, D., Kolick, V., Peoples, S., & Fleming, J. A.(2020). Saturated fats and health: A reassessment and proposal for food-based recommendations. Journal of the American College of Cardiology, 76(7), 844–857. https://doi.org/10.1016/j.jacc.2020.05.077
Li, Y., Tang, H., Yang, X., Ma, L., Zhou, H., Zhang, G., Chen, X., Ma, L., Gao, J., & Ji, W. (2024). Associations of ω-3, ω-6 polyunsaturated fatty acids intake and ω-6: ω-3 ratio with systemic immune and inflammatory biomarkers: NHANES 1999–2020. Frontiers in Nutrition, 11, 1410154. https://doi.org/10.3389/fnut.2024.1410154
Lemaitre, R. N., King, I. B., Mozaffarian, D., Kuller, L. H., Tracy, R. P., & Siscovick, D. S. (2003). n–3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: The Cardiovascular Health Study. The American Journal of Clinical Nutrition, 77(2), 319–325. https://doi.org/10.1093/ajcn/77.2.319
Sienski, G., Narayan, P., Bonner, J. M., Kory, N., Boland, S., Arczewska, A. A., ... & Tsai, L.-H. (2021). APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Science Translational Medicine, 13(583), eaaz4564. https://doi.org/10.1126/scitranslmed.aaz456
The Vagus Neve: The Thread Between Calm and Chaos
Breit, S., Kupferberg, A., Rogler, G., & Hasler, G. (2018). Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Frontiers in Psychiatry, 9, 44. https://doi.org/10.3389/fpsyt.2018.00044
ScienceDirect Topics. (n.d.). Vagus nerve – an overview. Elsevier. https://www.sciencedirect.com/topics/neuroscience/vagus-nerve
Peña, D. F., Engineer, N. D., & McIntyre, C. K. (2023). Vagus nerve stimulation: Mechanisms and factors involved in memory consolidation. Frontiers in Human Neuroscience, 17, 1152064. https://doi.org/10.3389/fnhum.2023.1152064
Korupolu, R., Miller, A., Park, A., & Yozbatiran, N. (2024). Neurorehabilitation with vagus nerve stimulation: A systematic review. Frontiers in Neurology, 15, 1390217. https://doi.org/10.3389/fneur.2024.1390217
Histamine - The Signal that Never Shuts Up
Shulpekova, Y.O., et al. (2021). Food Intolerance: The Role of Histamine. Nutrients, 13(9), 3207. https://www.mdpi.com/2072-6643/13/9/3207
https://doi.org/10.3390/nu13093207
Agúndez, J.A.G., et al. (2012). The Diamine Oxidase Gene Is Associated with Hypersensitivity Response to Non-Steroidal Anti-Inflammatory Drugs. PLOS ONE, 7(11), e47571. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047571 https://doi.org/10.1371/journal.pone.0047571
Shahid, M., et al. (2009). Histamine, Histamine Receptors, and their Role in Immunomodulation: An Updated Systematic Review. The Open Immunology Journal, 2, 9–41. https://benthamopen.com/contents/pdf/TOIJ/TOIJ-2-9.pdf
Kettner, L., Seitl, I., & Fischer, L. (2022). Recent advances in the application of microbial diamine oxidases and other histamine-oxidizing enzymes. World Journal of Microbiology and Biotechnology, 38, 232. https://link.springer.com/article/10.1007/s11274-022-03421-2 https://doi.org/10.1007/s11274-022-03421-2
Comas-Basté, O., et al. (2022). The Rate of Histamine Degradation by Diamine Oxidase Is Compromised by Other Biogenic Amines. Frontiers in Nutrition, 9, 897028. https://www.frontiersin.org/articles/10.3389/fnut.2022.897028/full https://doi.org/10.3389/fnut.2022.897028
Adrenaline: The Methylated Messenger
Anderson, O. S., Sant, K. E., & Dolinoy, D. C. (2012). Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. Journal of Nutritional Biochemistry, 23(8), 853–859. https://doi.org/10.1016/j.jnutbio.2012.03.003
Aronson JK. "Where name and image meet"--the argument for "adrenaline". BMJ. 2000 Feb 19;320(7233):506-9. doi: 10.1136/bmj.320.7233.506. PMID: 10678871; PMCID: PMC1127537
Eiden, L. E., & Eisenhofer, G. (2018). Catecholamine biosynthesis, storage, release, uptake, and metabolism. Frontiers in Endocrinology, 9, 343. https://www.frontiersin.org/articles/10.3389/fendo.2018.00343/full
→ Covers the full pathway of epinephrine synthesis, highlighting the methylation of norepinephrine by PNMT.
Eisenhofer, G., Kopin, I. J., & Goldstein, D. S. (2004). Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacological Reviews, 56(3), 331–349. https://doi.org/10.1124/pr.56.3.1
Kvetnansky, R., Sabban, E. L., & Palkovits, M. (2009). Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiological Reviews, 89(2), 535–606. https://doi.org/10.1152/physrev.00042.2006
Acetylcholine — The Neurotransmitter of Attention, Memory and Movement
Świt, P., Pollap, A., & Orzeł, J. (2023). Spectroscopic Determination of Acetylcholine (ACh): A Representative Review. Topics in Current Chemistry, 381(16).https://link.springer.com/article/10.1007/s41061-023-00426-9https://doi.org/10.1007/s41061-023-00426-9
Cleveland Clinic. (2022). Acetylcholine (ACh): What It Is, Function & Deficiency. https://my.clevelandclinic.org/health/articles/24568-acetylcholine-ach
Glutamine — The Quiet Bridge Between Brain and Body
de Oliveira, D.C., Lima, F.S., Sartori, T., Santos, A.C.A., Rogero, M.M., & Fock, R.A. (2016). Glutamine metabolism and its effects on immune response: molecular mechanism and gene expression. Nutrire, 41, 14.
https://link.springer.com/article/10.1186/s41110-016-0016-8 https://doi.org/10.1186/s41110-016-0016-8
Zhou, Y., & Danbolt, N.C. (2014). Glutamate as a neurotransmitter in the healthy brain. Journal of Neural Transmission, 121(8), 799–817.
https://link.springer.com/article/10.1007/s00702-014-1180-8 https://doi.org/10.1007/s00702-014-1180-8
Byrne, M. (2023). Monitoring and modelling the glutamine metabolic pathway: a review and perspectives.Metabolomics, 19, 31.
https://link.springer.com/article/10.1007/s11306-023-02031-9 https://doi.org/10.1007/s11306-023-02031-9
Li, S., et al. (2021). The role of glutamine in supporting gut health and neuropsychiatric disorders. Clinical Nutrition ESPEN, 41, 9–14.
https://www.sciencedirect.com/science/article/pii/S2213453021000112 https://doi.org/10.1016/j.clnesp.2021.01.003
Zhou, Y., & Danbolt, N.C. (2014). Glutamate as a neurotransmitter in the healthy brain. Journal of Neural Transmission, 121(8), 799–817.
https://link.springer.com/article/10.1007/s00702-014-1180-8 https://doi.org/10.1007/s00702-014-1180-8
GABA: The Brake Pedal in a World That Only Speeds Up
Engin, E., Engin, A. B., & Treit, D. (2022). GABA<sub>A</sub> receptor subtypes and benzodiazepine use, misuse, and abuse. Frontiers in Psychiatry, 13, 1060949. https://doi.org/10.3389/fpsyt.2022.1060949
Hinton, T., & Johnston, G. A. R. (2024). GABA, epigallocatechin gallate, tea, and the gut-brain axis. Neurochemistry International, 180, 105860. https://doi.org/10.1016/j.neuint.2024.105860
Strandwitz, P., Kim, K. H., Terekhova, D., Liu, J. K., Sharma, A., Levering, J., ... & Lewis, K. (2021). GABA-modulating bacteria of the human gut microbiota. Frontiers in Microbiology, 12, 656895. https://doi.org/10.3389/fmicb.2021.656895
Zhao, D., Xie, X., Liu, Y., & Liu, B. (2025). Advances in engineering and applications of microbial glutamate decarboxylase. Process Biochemistry, 134, 25–33. https://doi.org/10.1016/j.procbio.2024.09.005
Glutamate — The Spark of the Synapse
Zhou, Y., & Danbolt, N.C. (2014). Glutamate as a neurotransmitter in the healthy brain. Brain Research, 1575, 1–17.
https://link.springer.com/article/10.1007/s00702-014-1180-8 https://doi.org/10.1007/s00702-014-1180-8
Pal, M.M. (2021). Glutamate: The master neurotransmitter and its implications in chronic stress and mood disorders. Frontiers in Human Neuroscience, 15, 722323. https://www.frontiersin.org/articles/10.3389/fnhum.2021.722323/full https://doi.org/10.3389/fnhum.2021.722323
T
Cleveland Clinic. (2022). Glutamate: What it is & function. https://my.clevelandclinic.org/health/articles/22839-glutamate
Danbolt, N.C. (2001). Glutamate uptake. Progress in Neurobiology, 65(1), 1–105.
https://www.sciencedirect.com/science/article/pii/S0301008200000678 https://doi.org/10.1016/S0301-0082(00)00067-8
Dopamine: The Drive to Get Going
Archer, N., Aggarwal, B., & Rukundo, G. (2024). Association between dopamine genes, adiposity, food addiction, and eating behavior traits in adults with obesity. Frontiers in Nutrition, 11, 1466384. https://doi.org/10.3389/fnut.2024.1466384
Davis, C., Loxton, N. J., Levitan, R. D., Kaplan, A. S., Carter, J. C., & Kennedy, J. L. (2013). ‘Food addiction’ and its association with a dopaminergic multilocus genetic profile. Physiology & Behavior, 118, 63–69. https://doi.org/10.1016/j.physbeh.2013.05.014
Blum, K., Thanos, P. K., & Gold, M. S. (2014). Dopamine and glucose, obesity, and reward deficiency syndrome. Frontiers in Psychology, 5, 919. https://doi.org/10.3389/fpsyg.2014.00919
Volkow, N. D., Wang, G.-J., Tomasi, D., & Baler, R. D. (2011). The addictive dimensionality of obesity. Trends in Cognitive Sciences, 15(9), 377–386. https://doi.org/10.1016/j.tics.2011.06.003
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Frontiers in Neural Circuits, 7, 152. https://doi.org/10.3389/fncir.2013.00152
Serotonin — The Steady Hand in the Storm
Irum, N., Afzal, T., Faraz, M.H., Aslam, Z., & Rasheed, F. (2023). The role of gut microbiota in depression: An analysis of the gut-brain axis. Frontiers in Behavioral Neuroscience, 17, Article 1185522. https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1185522
https://doi.org/10.3389/fnbeh.2023.1185522
Liu, Y., et al. (2025). Multiple pathways through which the gut microbiota regulates neuronal mitochondrial function in depression. Frontiers in Microbiology, 16, Article 1578155. https://www.frontiersin.org/articles/10.3389/fmicb.2025.1578155 https://doi.org/10.3389/fmicb.2025.1578155
Zhao, D., et al. (2024). Dual sources of melatonin and evidence for different regulatory mechanisms in the pineal gland and retina. Frontiers in Endocrinology, 15, Article 1414463. https://www.frontiersin.org/articles/10.3389/fendo.2024.1414463 https://doi.org/10.3389/fendo.2024.1414463
Melatonin — The Molecule of Darkness
Buonfiglio, D., Tchio, C., & Tosini, G. (2019). Melatonin signaling: A key regulator of glucose homeostasis and energy metabolism. Frontiers in Endocrinology, 10, Article 488. https://www.frontiersin.org/articles/10.3389/fendo.2019.00488 https://doi.org/10.3389/fendo.2019.00488
Wang, X., et al. (2023). Nocturnal melatonin increases glucose uptake via insulin signaling in the hypothalamus.Frontiers in Endocrinology, 14, Article 1173113. https://www.frontiersin.org/articles/10.3389/fendo.2023.1173113 https://doi.org/10.3389/fendo.2023.1173113
Zhao, D., et al. (2024). Dual sources of melatonin and evidence for different regulatory mechanisms in the pineal gland and retina. Frontiers in Endocrinology, 15, Article 1414463. https://www.frontiersin.org/articles/10.3389/fendo.2024.1414463 https://doi.org/10.3389/fendo.2024.1414463
Circadian Rhythm: Your Body's Original Schedule
Bouâouda, H., & Jha, S.K. (2024). Editorial: Recent advances in sleep and circadian rhythms in appetite and energy intake. Frontiers in Neuroscience, 18, Article 1385619. https://www.frontiersin.org/articles/10.3389/fnins.2024.1385619https://doi.org/10.3389/fnins.2024.1385619
Strobel, C., et al. (2024). Editorial: Sleep and circadian rhythms in plasticity and memory. Frontiers in Systems Neuroscience, 18, Article 1351714.
https://www.frontiersin.org/articles/10.3389/fnsys.2024.1351714 https://doi.org/10.3389/fnsys.2024.1351714
Veasey, S.C., & Zee, P.C. (2021). Editorial: Roles of sleep disruption and circadian rhythm dysfunction in neurodegeneration. Frontiers in Neuroscience, 15, Article 737895. https://www.frontiersin.org/articles/10.3389/fnins.2021.737895 https://doi.org/10.3389/fnins.2021.737895
Sleep — The Most Honest Feedback Loop You Have
Bouâouda, H., & Jha, S.K. (2024). Editorial: Recent advances in sleep and circadian rhythms in appetite and energy intake. Frontiers in Neuroscience, 18, Article 1385619. https://www.frontiersin.org/articles/10.3389/fnins.2024.1385619 https://doi.org/10.3389/fnins.2024.1385619
Strobel, C., et al. (2024). Editorial: Sleep and circadian rhythms in plasticity and memory. Frontiers in Systems Neuroscience, 18, Article 1351714.
https://www.frontiersin.org/articles/10.3389/fnsys.2024.1351714 https://doi.org/10.3389/fnsys.2024.1351714
Veasey, S.C., & Zee, P.C. (2021). Editorial: Roles of sleep disruption and circadian rhythm dysfunction in neurodegeneration. Frontiers in Neuroscience, 15, Article 737895. https://www.frontiersin.org/articles/10.3389/fnins.2021.737895 https://doi.org/10.3389/fnins.2021.737895
The Fire Inside — Energy, Oxidative Stress, & How We Burn Without Breaking
Meyer, A., Laverny, G., Bernardi, L., Charles, A.L., Alsaleh, G., Pottecher, J., Sibilia, J., & Geny, B. (2018). Mitochondria: An organelle of bacterial origin controlling inflammation. Frontiers in Immunology, 9, Article 536. https://www.frontiersin.org/articles/10.3389/fimmu.2018.00536
https://doi.org/10.3389/fimmu.2018.00536
Staal, J., Blanco, L.P., & Perl, A. (2023). Editorial: Mitochondrial dysfunction in inflammation and autoimmunity.Frontiers in Immunology, 14, Article 1304315. https://www.frontiersin.org/articles/10.3389/fimmu.2023.1304315 https://doi.org/10.3389/fimmu.2023.1304315
Xu, X., Ou, W., Zhang, Y., et al. (2023). Mitochondria in innate immunity signaling and its implication in autoimmune diseases. Frontiers in Immunology, 14, Article 1160035. https://www.frontiersin.org/articles/10.3389/fimmu.2023.1160035 https://doi.org/10.3389/fimmu.2023.1160035
Where Energy Begins
References
Lodish, H., Berk, A., Zipursky, S.L., et al. (2000). Principles of bioenergetics and mitochondria. In Molecular Cell Biology (4th ed.). W.H. Freeman. https://www.ncbi.nlm.nih.gov/books/NBK2882/
Nicholls, D.G., & Ferguson, S.J. (2013). Bioenergetics 4. Academic Press. https://www.sciencedirect.com/book/9780123884251/bioenergetics
Roger, A.J., Muñoz-Gómez, S.A., & Kamikawa, R. (2017). The origin and diversification of mitochondria. Current Biology, 27(21), R1177–R1192.
https://www.sciencedirect.com/science/article/pii/S096098221731179X
Wallace, D.C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of Genetics, 39, 359–407. https://www.annualreviews.org/doi/10.1146/annurev.genet.39.110304.095751
The Body’s Blueprint
References
MIT Department of Biology. (n.d.). The Blueprint of a Body: How Cells Know What They’re Building. https://biology.mit.edu/the-blueprint-of-a-body/
National Human Genome Research Institute (NHGRI):. https://www.genome.gov/about-genomics
Phys.org. (2007). Explorer Completes the Map for the Body's Blueprint. https://phys.org/news/2007-09-explorer-body-blueprint.html
National Institutes of Health. (2011). Biological Blueprints. NIH News in Health. https://newsinhealth.nih.gov/2011/01/biological-blueprints
What a Nutrition DNA Test Can Tell You — and Is the Science There?
References
Cornelis, M.C., El-Sohemy, A., Kabagambe, E.K., & Campos, H. (2006). Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA, 295(10), 1135–1141. https://jamanetwork.com/journals/jama/fullarticle/202502
Feil, R., & Fraga, M.F. (2012). Epigenetics and the environment: Emerging patterns and implications. Nature Reviews Genetics, 13(2), 97–109.https://www.nature.com/articles/nrg3142
Livingstone, K.M., Celis-Morales, C., Navas-Carretero, S., et al. (2016). Effect of personalized nutrition on health-related behaviour change: Evidence from the Food4Me European randomized controlled trial. International Journal of Epidemiology, 45(2), 578–588.
https://academic.oup.com/ije/article/45/2/578/2572581
Müller, M., & Kersten, S. (2003). Nutrigenomics: Goals and strategies. Nature Reviews Genetics, 4(4), 315–322.
https://www.nature.com/articles/nrg1047
Nielsen, D.E., & El-Sohemy, A. (2014). Disclosure of genetic information and change in dietary intake: A randomized controlled trial. PLOS ONE, 9(11), e112665. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112665
Svetkey, L.P., Moore, T.J., Funk, K., et al. (1996). Renin-angiotensin system genetic polymorphisms and salt sensitivity in essential hypertension. Hypertension, 28(6), 944–952. https://www.ahajournals.org/doi/10.1161/01.HYP.28.6.944
Weinberger, M.H., Fineberg, N.S., Fineberg, S.E., & Weinberger, M.W. (2001). Blood pressure and interactions between the angiotensin polymorphism AGT M235T and sodium intake: A cross-sectional population study. The American Journal of Clinical Nutrition, 74(3), 403–409. https://academic.oup.com/ajcn/article/74/3/403/4737432